

MATLAB Marina: Iteration, for loops advanced

Iterating Over Indices Versus Iterating Over Values
The loop control array for a for loop can either be an array of indices as has been used
previously or an array of values. Consider the program to sum an array of values shown in
Figure 1a.

Figure 1a. Array Sum Program (loop control array contains indices)

The loop control expression creates an array of indices for the array whose elements will be
summed. Each time though the loop:

• The loop control variable gets the next index for the array.
• A value is extracted from the array using indexing, v(k)
• The extracted value is added to the current sum and the sum is overwritten with the

new value for the sum.
The operations are repeated for each index of the array until all of the indices have been used.

The program of Figure 1b produces the same result as that of Figure 1a but the for loop iterates
over the values of the array rather than indices. The loop control expression creates an array of
values (a copy of the array values). Each time though the loop:

• The loop control variable gets the value in the array (next column of the array).
• The value is added to the current sum and the sum is overwritten with the new value for

the sum.
The operations are repeated for each value of the array until all of the values have been used.

% sum the elements of an array
clear; clc;
v = [17, 32, 13, 42, 63, 57];

% set initial sum to zero
 res = 0;

% sum the elements of the array
% iterate using the array indices as loop control array
 for k = 1:1:length(v)
 % extract array element and add to sum, overwrite sum with
new value
 res = res + v(k);
end

% display the array sum
fprintf('Array sum is: %d\n', res);

2

Figure 1b. Array Sum Program (loop control array contains values)

The array values do not need to be indexed as the loop control variable will be assigned the
values from the array. Iterating over the array values is appropriate when the location of the
value is not important. Iterating over values is generally used when producing a scalar result
from an array. If producing an array result with values corresponding to the original array,
iterating over indices is appropriate since one needs the array location of the original value and
where to place the result. This mechanism for controlling a for loop is not typical of most
programming languages.

2D Loop Control Arrays
Recall that the loop control expression must result in an array. When the loop control array is a
2D array, the loop control variable will be assigned a column array rather than a scalar for each
iteration of the loop.

The program of Figure 2 processes a 2D array of exam scores and computes the average of each
column of scores. Each column of the array corresponds to one student’s scores and the exam
average for the student is the average of the scores in the column.

The loop control array is a 2D array of scores and the loop is iterating over values. Each loop
iteration, the loop control variable vals is assigned a three by one column array corresponding
to the exam scores for a student. The average of the values in the column vector is computed
and stored in the examAvgs array. The for loop is executed four times, once for each column
in the examScores 2D Array.

Iteration using a 2D array as the loop control array is useful for iterating over complex data
structures since column indexing is done as part of the for loop operation.

% sum the elements of an array
clear; clc;
v = [17, 32, 13, 42, 63, 57];

% set initial sum to zero
 res = 0;

% sum the elements of the array
% iterate using the array values as loop control array
 for val = v
 % add the array value to sum, overwrite sum with new value
 res = res + val;
end

% display the array sum
fprintf('Array sum is: %d\n', res);

3

Figure 2. Program to Determine Exam Averages

The computation of the average score for each student in the program of Figure 2 could be
done using MATLAB’s mean function instead of adding the three scores and dividing by three,
examAvgs(studentNum) = mean(vals);
The averages for all students could be done directly using MATLAB’s mean function by taking
the mean along the columns of the exam scores 2D array
examAvgs = mean(examScores,1);
This would eliminate the need for a loop and is possible since many MATLAB functions are
defined for 2D arrays.

Nested for loops
Nested loops have one or more inner loops contained in the loop body of an outer loop. Nested
for loops are commonly used when processing multi-dimensional arrays such as image
processing operations. Some image processing applications require triple or quad nested loops.

The program of Figure 3 produces the same result as that of Figure 2, but the exam averages
are computed using a nested for loop. The outer for loop iterates over the column indices of
the array; each column corresponds to the scores for a student. The inner for loop iterates over
the row indices of the array which correspond to the scores for the student.

Each time though the outer loop:

• The loop control variable k1 gets the column index corresponding to the current
student.

• The inner loop is executed.
o The loop control variable k2 gets the row index corresponding to the next score

for the student.
o The score is extracted from the 2D array, examScores(k2,k1), and added to

the sum of scores for the student.
• Once the inner loop sums all the scores for the student, the average scores is computed

and saved.

% Exam scores for four students
examScores = [[85;78;80], [75;77;78], [65;71;52], [95;86;90]];
% Allocate space for the averages (row vector)
examAvgs = zeros(1,size(examScores,2));

studentNum = 1;
% for each student
for vals = examScores
 % compute average of the scores in the column
 examAvgs(studentNum) = (vals(1) + vals(2) + vals(3))/3;
 studentNum = studentNum + 1;
end

4

The operations are repeated for each column of the array until all of the columns have been
used. For this example, k2 is the index for the student (student scores are column data) and k1
is the index for the score.

Figure 3. Program to Determine Exam Averages

Mixing Array Operations and Iteration
Operations in a loop body are generally scalar operations although there are some problems
that involve both iteration and array operations for solutions using MATLAB. Computing a
harmonic sum of sinusoids for a Fourier series representation of a signal is one application.

Fourier series representation of a periodic signal x(t) can be represented as a harmonic sum of
sinusoids.

() ()0 0
1

cosk k
k

x t A A kω t φ
∞

=

= + +∑

Harmonic frequencies are frequencies that are integer multiples of each other. Generally, the
number of harmonics required is infinite, but an approximation for N terms can often be used

() ()
1

0 0
1

cos
N

N k k
k

x t A A kω t φ
−

=

= + +∑

The fundamental frequency 0ω is also the first harmonic, 02ω is the second harmonic, 03ω is
the third harmonic and so on. The kth harmonic is 0k kω ω= .

The program of Figure 4 computes a Fourier series approximation of a signal using 20
harmonics.

% Exam scores for four students
examScores = [[85;78;80], [75;77;78], [65;71;52], [95;86;90]];
% Allocate space for the averages (row vector)

% number of exam scores and number of students
examAvgs = zeros(1,size(examScores,2));

[nrow, ncol] = size(examScores);
% for each student
for k1 = 1:1:ncol
 % each each exam score
 examSum = 0;
 for k2 = 1:1:nrow
 examSum = examSum + examScores(k2,k1);
 end
 % compute and save average
 examAvgs(k1) = examSum/nrow;
end

5

Figure 4a. Fourier Series Approximation of Signal

A for loop is used to run through the N harmonics. In the loop body, the amplitude of the
harmonic in computed and then the cosine function corresponding to that harmonic is
computed using an array operation (t is an array of time values). This is done for each harmonic.
The loop performs a running sum operation on arrays of values where each array corresponds
to the function points for the harmonic and each has the same length as the t array. This would
be difficult to program using only array operations as the lengths of the Ak and t arrays would
not be the same.

Figure 4b. Fourier Series Approximation of Signal

Last modified April 27, 2021

 MATLAB Marina is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t (s)

1

1.5

2

2.5

3

x(
t)

% Fourier series using DC term A0 plus 10 harmonics
A0 = 1;
N = 20;

% fundamental frequency (rad/s)
w0 = 20*pi;
t = 0:0.001:0.4;
x = ones(1,length(t))*A0;

% sum the harmonic sinusoids
for k = 1:1:N
 Ak = (-1)^k*2/(pi*k);
 x = x + Ak*cos(k*w0*t);
end

http://www.matlabmarina.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	MATLAB Marina: Iteration, for loops advanced
	Iterating Over Indices Versus Iterating Over Values
	2D Loop Control Arrays
	Nested for loops
	Mixing Array Operations and Iteration

